
Noise Injection Adaption: End-to-End ReRAM Crossbar
Non-ideal Effect Adaption for Neural Network Mapping

Zhezhi He†, Jie Lin†, Rickard Ewetz, Jiann-Shiun Yuan and Deliang Fan
Dept. of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816

† These authors contributed equally

Elliot.He@knights.ucf.edu,dfan@ucf.edu

ABSTRACT

In this work, we investigate various non-ideal effects (Stuck-At-

Fault (SAF), IR-drop, thermal noise, shot noise, and random tele-

graph noise) of ReRAM crossbar when employing it as a dot-product

engine for deep neural network (DNN) acceleration. In order to

examine the impacts of those non-ideal effects, we first develop a

comprehensive framework called PytorX based on main-stream

DNN pytorch framework. PytorX could perform end-to-end train-

ing, mapping, and evaluation for crossbar-based neural network

accelerator, considering all above discussed non-ideal effects of

ReRAM crossbar together. Experiments based on PytorX show that

directly mapping the trained large scale DNN into crossbar without

considering these non-ideal effects could lead to a complete system

malfunction (i.e., equal to random guess) when the neural network

goes deeper and wider. In particular, to address SAF side effects,

we propose a digital SAF error correction algorithm to compensate

for crossbar output errors, which only needs one-time profiling

to achieve almost no system accuracy degradation. Then, to over-

come IR drop effects, we propose a Noise Injection Adaption (NIA)

methodology by incorporating statistics of current shift caused

by IR drop in each crossbar as stochastic noise to DNN training

algorithm, which could efficiently regularize DNN model to make it

intrinsically adaptive to non-ideal ReRAM crossbar. It is a one-time

training method without the request of retraining for every spe-

cific crossbar. Optimizing system operating frequency could easily

take care of rest non-ideal effects. Various experiments on different

DNNs using image recognition application are conducted to show

the efficacy of our proposed methodology.

1 INTRODUCTION

Resistive crossbar memory, as one the most popular memory ar-

ray structure, has drawn great research interests owing to its high

memory accessing bandwidth and in-situ computing ability. More

importantly, its current-mode weighted summation operation in-

trinsically matches the dominant Multiplication-and-Accumulation

(MAC) in the artificial neural network, making it one of the most

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DAC ’19, June 2–6, 2019, Las Vegas, NV, USA

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6725-7/19/06. . . $15.00
https://doi.org/10.1145/3316781.3317870

promising candidates as the basic computing unit for neural net-

work accelerator design [5, 7]. Resistive Random-Access-Memory

(ReRAM) is a two terminal device with programmable resistance,

which is taken as the target device in this work. However, many

non-ideal effects, such as wire resistance, Stuck-At-Fault (SAF),

thermal noise, shot noise, random telegraph noise, etc. [9], are ham-

pering the progress of real hardware implementation of large-scale

deep neural network (DNN) on ReRAM crossbar-based accelera-

tor. Many recent works have investigated such issue with either

hardware or software solutions, which are summarized as follows.

Hardware approach: In [18], Xu et al. investigate the impact of

different resistance allocation schemes, programming strategies,

peripheral designs, and material selections in terms of the area,

latency, power, and reliability of ReRAM crossbar. The IR-drop

caused by the wire resistance of the crossbar is modeled by Liu et

al. in [13].

Software approach: Other recent works [2, 3, 9] have adopted

different methods that all require retraining the weights of target

DNN to be mapped in a crossbar array w.r.t various non-ideal

effects for the specific device. However, the main drawback of such

method is that the compute-intensive retraining is required for each

specific crossbar accelerator, which is definitely not cost-efficient

and not practical for future DNN deployment into different crossbar

accelerators in the user end. Beyond that, typical anti-nonideal

effect retraining considers and adapts the deterministic non-ideal

effect (e.g., SAF defects). While, incorporation of many other non-

ideal effects (e.g., thermal noise) with stochastic behavior or IR-drop

still remain unsolved. Therefore, rather than retraining the DNN to

get reconstructed weights every time for a new crossbar accelerator,

we propose different techniques for each type of non-ideal effects,

which only need one-time optimization for target DNN.

Our main contributions in this work can be enumerated as:

• We first develop a comprehensive crossbar-based simulation

framework for DNN training, mapping, and evaluation, called

pytorX1. PytorX is built on top of pytorch, which is one of the

most popular python based deep learning framework. Different

ReRAM crossbar non-ideal effects, including IR-drop (i.e., wire re-

sistance), Stuck-At-Fault (SAF) defects, thermal noise, shot noise

and Random Telegraph Noise (RTN), are modeled as determin-

istic or stochastic noise to accurately evaluate the performance

of DNN on ReRAM crossbar. Based on PytorX, we show that

SAF and IR-drop become the main accuracy degradation sources

when DNN model goes deeper and wider. While other non-ideal

effects have limited effects on accuracy through optimizing the

operating frequency.

1Code is released at https://github.com/elliothe/PytorX

• To overcome SAF effects on DNN crossbar, we propose a new

digital SAF Error Correction method which only needs one-time

profiling of the target crossbar without compute-intensive net-

work retraining. It achieves almost no accuracy degradation in

ResNet20 for CIFAR10 dataset.

• To overcome the large IR drop in ReRAM crossbar, we propose a

Noise Injection Adaption (NIA) methodology by modeling the

statistics of current drift caused by wire resistance as a stochastic

noise source, then incorporate the modeled noise source into

DNN training. Such a method could eventually regularize DNN

model to make it intrinsically adaptive to varying IR-drop. Note

that, such noise injection is added to the initial DNN training for

crossbar mapping and no re-training is needed for each particular

accelerator.

• As for thermal, shot and random telegraph noise, we show that

crossbar system accuracy is less sensitive when optimizing the

operating frequency. Various experiments on different DNNs us-

ing image recognition application are conducted to demonstrate

the efficacy of our proposed comprehensive methodology.

2 NON-IDEAL EFFECTS AND MODELING

Generally, the non-ideal effects of ReRAM crossbar can be divided

into two categories and modeled as deterministic noise nd and

stochastic noise ns. In this work, we will consider Stuck-At-Fault

(SAF) as the deterministic non-ideal effect, while the stochastic

non-ideal effects include effects of crossbar wire resistance, thermal

noise, shot noise and Random Telegraph Noise (RTN).

2.1 Deterministic Noise Modeling

2.1.1 device defects. There are two kinds of Stuck-At-Fault (SAF)

defects, which are Stuck-At-zero (SA0) and Stuck-At-one (SA1)

respectively [17, 19]. The SA0 defect is normally caused by short

defects, which makes parts of the ReRAM cells always at high

conductance state (i.e., Gmax). The SA1 defect is resulting from the

cell permanent damage and broken selector or wire, which makes

parts of the ReRAM cells stuck at low conductance state (i.e.,Gmin).

The ReRAM fabrication results in [4] show 1.75% and 9.04% defect

rate for SA0 and SA1 respectively. The SA0/SA1 defect rates around

the 1.75%/9.04% are taken as the region of interest in this work.

2.2 Stochastic Noise Modeling

2.2.1 wire resistance. In this work, the reason we consider the

wire resistance as a stochastic noise term is that the output current

degradation of crossbar highly relies on both input voltage and

corresponding ReRAM conductance. Modeling it as a deterministic

term is extremely computing expensive and not feasible for large

scale DNN mapping. For example, in [13], Liu et al. employ a gradi-

ent search method to compensate for the weight matrix for IR-drop.

However, the process needs to be repeated whenever the inputs of

crossbar changes, which requires massive computing resources and

training time. In this work, we propose to leverage the statistics of

current drift caused by wire resistance, then model it as a stochastic

noise source. PytorX will take such noise source into DNN training,

which improves the robustness of DNN against the IR-drop. The

implementation details are given in in section 4.3.

2.2.2 Thermal Noise and Shot Noise. Thermal noise is typically

caused by thermal agitation of the electrical carriers, while the shot

noise is induced by the random arrival of the carriers [10]. Both

of them can be modeled with random current source following

zero-mean Gaussian distribution. Thus we merge them as a single

current source presented in parallel with ReRAM and the Root-

Mean-Square (RMS) current, which can be expressed as:

irms =
√
Gf (4KBT + 2qV) (1)

where G is the ReRAM conductance, f is the operating frequency

of the crossbar, KB is Boltzmann constant, T is the temperature

in Kelvin, q is electron charge, and V is the voltage drop across

the ReRAM two terminals. Furthermore, we also include the pro-

gramming variation of ReRAM in our noise model. We consider

the programming variation follows Gaussian distribution N (0,σ 2),

where σ = ΔG/3 and ΔG is the ReRAM conductance resolution.

Then, the equivalent standard deviation of ReRAM conductance

can be described as:

дrms =
irms

V
=

√
Gf (4KBT + 2qV)

V 2
+

(
ΔG

3

)2
(2)

2.2.3 Random Telegraph Noise. Random Telegraph Noise (RTN)

constitutes a major cause of the errors in ReRAM by temporarily

and randomly reducing the resistance [15]. In this work, we adopt

the RTN model proposed by Ielmini et al. in [8], where the average

ReRAM resistance change (Rrtn) strongly depends on the current

resistance state of ReRAM (R). The relation can be described as

Rrtn/R = aR+b, where a and b are fitting parameters. By converting

the resistance into conductance, we can obtainGrtn/G = bG+a
G−(bG+a)

.

With a = 1.662e − 7 and b = 0.0015 reported by [8], we model the

RTN as a Poisson process [15]. Thus, the actual ReRAM conductance

value under RTN (Gact) can be mathematically written as:

Gact =

{
G +Grtn τ < 0.5

G otherwise
(3)

where τ is a random number that uniformly distributed between

(0,1) (data from [15]).

3 CROSSBAR BASED NN-ACCELERATOR

In this section, we first introduce the single ReRAM crossbar design

as the dot-product engine. Then, the network partition method

adopted for mapping the large scale DNN across multiple arrays

is introduced in the following subsection. Note that, we assume

there exists a digital arithmetic unit as the co-processor within the

crossbar-based accelerator, to perform signal scaling, addition with

bias and other computations like Batch-Normalization layers.

3.1 Single array as dot-product engine

The primary computation of convolution and fully connected layer

in deep convolution neural network is the weighted summation

with bias offset, which can be rewritten as the element-wise dot-

product format:

y = wT · x + b =

[
wT

1

]
·
[
x b

]
(4)

2

...

DI
FF

AD
C

outj[n]

Positive Array Negative Array

G11+ G12+ G1j+

G21+ G22+ G2j+

Gi1+ Gi2+ Gij+

G11- G12-
G1j-

G21- G22- G2j-

Gi1- Gi2- Gij-

i X j Crossbar

Positive
Current

Negative
Current

i X j Crossbar

TIA TIA

Vref

V1 V1

V2 V2

...

Vi Vi

DAC

DAC

DAC

in1[n]

in2[n]

ini[n]

V1

V2

Vi

DAC array

Gon

Gr

Figure 1: Hardware implementation of singleM ×M ReRAM

crossbar array pair (positive and negative array) as analog

dot-product engine. ReRAM selector is modeled as Gon cas-

caded with ReRAM conductance Gr.

wherew and x are vectorized weights and inputs respectively, and

b is the bias term. For hardware mapping purpose, both weight

(w ∈ Z · Δx) and input (x ∈ Z · Δw) are quantized into fixed-point

representation, where Δx and Δw are the fixed-point quantization

step size. In this work, we choose 8-bit for both the inputs and

the weights, and we emit the bias term where the computation is

performed by the digital co-processor. Thus, the above equation

can be rewritten as:

y = (Δw · Δx)
∑
i

ŵi · x̂i (5)

The ReRAM crossbar is taken as the analog dot-product engine

to accelerate the computation of eq. (5) as shown in fig. 1. Owing

to the weights can be either positive or negative, each weight is

represented by two ReRAM cells (i.e., G+
i, j and G−

i, j) allocated in

a positive and a negative array. As shown in fig. 1, the input xi
is encoded as binary bit-strings ini [n] for crossbar input, where
each one has 8-bit digits (n = 8) in 2’s complement format. Such

binary encoded inputs are converted by the DACs, where the output

voltage of the DAC on i-th row can be expressed as:

VDAC,i = Vref + ΔVDAC · x̂i (6)

whereVref = VDD/2 is the reference voltage, and ΔVDAC is the mini-

mum voltage stage of the DAC. Therefore, the current forward into

the differential ADC for j-th column pair (i.e., two corresponding

columns in the positive and the negative array) can be described as:

IADC, j =
M∑
i=1

(
(VDAC,i −Vref) · (G

+
i, j −G−

i, j)

)
(7)

For ReRAMcrossbar programming, there exist twomapping schemes

which are equal-ΔR and equal-ΔG respective. Hereby we adopt

the more straight-forward equal-ΔG mapping scheme since the

equal-ΔR introduces an undesired device-oriented non-uniform

quantization.

In order to properly mapping the eq. (5) onto the eq. (7), we

rewrite the function as follows:

G+
i, j −G−

i, j = ΔG · ŵ (8)

Algorithm 1 DNN quantization training scheme.

Require: Layer-wise quantization step of input Δx , weight Δw ,

and ADC ΔIADC. Resolution of input, weight, ADC are in N dac
B

,

N rram
B

, and N adc
B

bits. Number of training batches Ntrain.

Ensure: Minimize the loss and obtain fixed Δx , Δw and ΔIADC.
{1. Training phase of l-th layer in epoch t }

1: Initialization: Sx ← 0; SI ← SI + ΔIADC
2: for i := 1 to Ntrain do

3: Updatewl through back-propagation

4: Δwl ← max(|wl |)/2
N rram
B

5: Δxl ← max(|xl |)/2
(N dac

B
−1)

6: Compute IADC � eq. (10)

7: ΔIADC ← max(|IADC |)/2
(N adc

B
−1)

8: Sx ← Sx + Δxl ; SI ← SI + ΔIADC
9: end for

{2. Test phase}

10: Δxl ← Sx /Ntrain; ΔIADC ← SI/Ntrain

G+, G− =

{
ΔG · ŵ +Gmin, Gmin if ŵ ≥ 0

Gmin, ΔG · |ŵ |+Gmin if ŵ < 0
(9)

where ΔG is the conductance step size of the programmable ReRAM

cell. Note that here the conductanceG+/G− is the series combina-

tion of the on-conductance of the selector Gon and the ReRAM

programmed value Gi, j . Thus, eq. (7) can be reformatted as:

IADC, j = (ΔVDAC · ΔG)
M∑
i=1

x̂ · ŵ (10)

Then, with the ADC at the output-end for performing current

sensing and quantization function2, where the LSB current of ADC

is configured as ΔIADC = k · ΔVDAC · ΔG , the final output is:

ŷ = round(
IADC, j

ΔIADC
) = round(

1

k

M∑
i=1

x̂ · ŵ) (11)

In this work, we consider ΔVDAC and ΔG are fixed by hardware,

while ΔIADC is configurable through tuning the reference current

source of ADC. To prevent the accuracy degradation caused by the

quantization error, we also propose a crossbar-aware network quan-

tizationmethod as described in algorithm 1. Rather thanminimizing

the quantization error w.r.t each input, our method optimizes the

layer-wise Δw , Δx and k , then return them as the fixed value. Thus,

the computation workload on digital co-processor is minimized.

3.2 Network Partition on Matrix Arrays

Nowadays, the parametric layers of the state-of-the-art DNN nor-

mally contain a large number of weights which exceeds the size

of a single crossbar. Thus, each DNN layer may require multiple

crossbar arrays for weight accommodation. A network partition

technique is necessary here for efficient weight mapping and net-

work computation. For simplicity, we adopt the naive network

partition method similar as introduced in [16], which converts the

weight tensor of each convolution/fully-connected layer into two

2In this work, we use the eq. (11) for simplicity. For a more commonly used ADC
quantization, ŷ = round(IADC, j /ΔIADC − 0.5) + 0.5 is also an option.

3

Table 1: Parameters of ReRAM crossbar system.

Symbol Description Value

f Operating frequency 0.01∼1 GHz

Vdd/Vref Supply/reference voltage 3.3/1.67 V

Gmin/Gmax ReRAM min/max conductance 333/0.33 μS
ΔG Conductance step size 2.601 μS

N
{adc,dac}
B

Resolution of ADC/DAC 8/8 bit

T Temperature 300∼350 K

Csize Crossbar Dimension 32, 64, 128

4-D Matrix Arrays with shape {Nrow,Ncol,Csize,Csize} asG
+ andG−

respectively, where Nrow×Ncol is the number of crossbar arrays

used for one layer.

4 END-TO-END NETWORK ADAPTION

In this section, we will explicitly discuss the impacts of different

non-ideal effects on the ReRAM crossbar based DNN acceleration,

and the effectiveness of proposed countermeasures for preventing

accuracy degradation.

4.1 Simulation Framework and Configurations

We divide the experimental setup into hardware and software parts

for the clarification of the tool-chain and models used in this work.

Hardware: The state-of-the-art fabrication result has shown the

6-bit [20] to 7-bit [1] ReRAM programmable resistance level. In this

work, we choose moderate resolutions for ADC, DAC and ReRAM

(i.e., 8-8-7 bit), other chosen parameters are tabulated in table 1.

Partial of the parameters chosen for the non-ideal effects setup are

provided in section 2. The ReRAM crossbar-based neural network

accelerator is operating as introduced in section 3.

Software: In order to perform a comprehensive investigation on

ReRAM crossbar based neural network accelerator under various

non-ideal effects, we build a comprehensive simulation framework

called PytorX, which is implemented in Python and built upon Py-

Torch. It models the crossbar computation based on the discussion

and equations in section 3, including signal/unit conversion (i.e.,

DAC, ADC, and weight mapping), weight partition on multiple

arrays, and etc. PytorX is a GPU-favored framework and fully relies

on the tensor operation, thanks to the rich APIs provided by the

Pytorch. In order to demonstrate the effectiveness of our proposed

method, we take the classical object recognition task as an example.

A variety of DNN architectures (LeNet-5 variant 3 and ResNet-20

[6]) on different scale datasets (MNIST [12] and CIFAR-10 [11])

are studied in the following sections. Hyper-parameters configu-

ration and image argumentation method adopted in this work are

following their original works, which will not be listed here.

4.2 Error Correction for SAF

Many previous studies [3, 17] only discuss the effect of SAF on

NN inference, using a simple 2-layers fully-connected network

on MNIST, where the results show that SAF indeed affects the

accuracy but with a relatively low degradation. However, what

we found in our experiments is that such accuracy degradation

3https://github.com/pytorch/examples/blob/master/mnist/main.py

Figure 2: Test accuracy versus SA0/SA1 rate, w/o or w/ Er-

ror Correction (EC). (Top) LeNet-5 on MNIST dataset; (Bot-

tom) ResNet-20 on CIFAR-10 dataset. Error-bar denotes

mean±std with 100 trials, and crossbar size is 64. Regions

with blue shadow are regions of interest.

drastically increases with wider and deeper network architecture

on a larger dataset. fig. 2 depicts the test accuracy on MNIST and

CIFAR-10 dataset using LeNet-5 and ResNet-20 respectively, where

the blue shadow indicates the region of interest (i.e., experimentally

reported SAF rate). Note that, the SAF rate we used is 1.75% for

SA0 and 9% for SA1, respectively. As shown in fig. 2, when directly

mapping the network into the crossbar system without any error

correction techniques, 1% SA0 defect rate can lead to a complete

system malfunction on CIFAR-10 dataset with ResNet-20.

As the countermeasure to both SA0 and SA1, in this work, we

propose a digital SAF Error Correction (EC) solution to compensate

the computation error with the digital co-processor. Such method

can be generally described into steps: 1) Profiling the current SAF

status of ReRAM crossbar system, then indexing the ReRAM cells

with SA0/SA1 defects using binary tensor isa0/isa1; 2) Calculating
the crossbar output difference yec between the non-ideal output

caused by SAF and the ideal output, where the details are elabo-

rated in algorithm 2; 3) Adding the yield yec at the crossbar output
utilizing the digital units. Normally, the addition operation in the

last step can integrate with the following Batch-Norm layer (i.e.,

Affine function). For CIFAR-10 test accuracy reported in fig. 2, the

SAF-free accuracy is 92.39%. With our error correction method, the

worst-case accuracy we obtain is 92.23± 0.08%, where the accuracy

gap is negligible. Moreover, the binary SAF indexing tensor can use

the sparse encoding for efficient storage and computation. Note

that, our proposed EC is a local correction method where the DNN

retraining is not involved.

4.3 Noise Injection Adaption for IR-drop

The IR-drop caused by wire resistance is another dominant factor

which may cause the system malfunction. With a specific wire

technology, the IR-drop is not only determined by the crossbar di-

mension but strongly correlated to both input voltage magnitudes

and conductance distribution of ReRAM cells. To visualize the im-

pact of crossbar dimension, we plot the distribution of normalized

voltage drop (V ′/V) across ReRAM cells in fig. 3, where V ′ is the

voltage drop considering IR-drop, while V is the ideal case without

4

Algorithm 2 Error Correction (EC) for Stuck-At-Fault (SA0/SA1).

Require: input voltage tensor V , ideal weight conductance tensor

w/o SAF G+ and G−, non-ideal weight conductance tensor

w/ SAF Gsaf
+ and Gsaf

− . SA0 indexing tensor isa0+ and isa0− , SA1

indexing tenor isa1+ and isa1− . SA0 and SA1 leads to Gmax and

Gmin respectively. ADC current-to-digital conversion fadc(·).
Ensure: for the given input V , the output of ReRAM crossbar is

corrected using error compensation w.r.t the profiled SA0 and

SA1 information.

1: y ← fadc(V ×Gsaf
+ −V ×Gsaf

−) � Crossbar output

2: Gdiff
+ ← (G+ −Gmax) · isa0+ + (G+ −Gmin) · i

sa1
+

3: Gdiff
− ← (G− −Gmax) · isa0− + (G− −Gmin) · i

sa1
−

4: yec ← fadc(V ×Gdiff
+ −V ×Gdiff

−) � output diff. w.r.t SAF

return yout ← y +yec � Digital error compensation

Normalized row number

0.0
0.4

0.8

Norm
alized column number

0.0
0.4

0.8

N
o
rm

a
li
z
e
d
 v

o
lt

a
g
e

0.2

0.4

0.6

0.8

Normalized row number

0.0
0.4

0.8

Norm
alized column number

0.0
0.4

0.8

N
o
rm

a
li
z
e
d
 v

o
lt

a
g
e

0.0

0.2

0.4

0.6

0.8

0.0 0.2 0.4 0.6 0.8 1.0
Normalized voltage distribution

Figure 3: Distribution of Voltage drop of crossbarwith differ-

ent dimensions. Surfaces from top down are 32 × 32, 64 × 64

and 128 × 128 size respectively. (Left) is worst case, (Right) is

normal case

IR-drop. fig. 3 indicates that choosing 128 × 128 as crossbar size is

impractical for an accelerator design due to huge IR drop.

In order to study the impact of IR-drop on DNN inference ac-

curacy, we integrate a dynamic crossbar solver into our PytorX

simulation framework, based on the simplified Modified Nodal

Analysis [14]. The test accuracy on MNIST and CIFAR-10 with

IR-drop considered is reported in table 2, where directly mapping

the network on 64 × 64 crossbar results in more than 65% accuracy

degradation. For mitigating such significant accuracy loss, we ini-

tially attempt to optimize DNN training considering such IR-drop

effects, through counting the real-time current shift of each cross-

bar during the weight update and make it adaptive to existing IR

drop effect. However, the biggest problem is that the existing cross-

bar IR drop solver requires massive computation resources to get

real-time shifted current based on current inputs, which also grows

exponentially with larger crossbar size. In our experiment, a simple

LeNet-5 training takes all of the 64GB main memory and costs days

to converge in a 4 Nvidia TitanX GPU workstation, which is too

computing-intensive if considering such accurate IR-drop effects.

Note that, it will become even worse if the network becomes deeper

and wider.

Thus, we propose a Noise Injection Adaption (NIA) method

which can statistically approximate the effect of IR-drop and incor-

porate it into network training, for balancing computation resource

and the accuracy of the trained model. Taking LetNet-5 on MNIST

as an example, our NIA can be divided into three steps: (1) we first

train a LetNet-5 without considering IR-drop during training. Then,

with the trained LetNet-5 mapped on the crossbar matrix arrays in

our PytorX, we can collect the crossbar output current shift with or

without IR-drop for all of the testing data; (2) we approximate the

effect of IR-drop as a Gaussian noise source at each crossbar output

end, with crossbar-wise mean and standard deviation extracted

from the collected statistics; (3) we train the network again with

such approximated additive IR drop noise applied at each output

of crossbar arrays. The only overhead of our NIA method is a net-

work optimization step which has similar timing cost as a typical

DNN training. After the network optimization with NIA, accuracy

degradation is significantly reduced as reported in table 2.

Table 2: Test accuracy on MNIST with various crossbar di-

mensions and our proposed methods

Dataset

(crossbar size)

MINIST

(32×32)

MNIST

(64×64)

Software 99.04% 99.1%

Direct Mapping with EC 96.2% 32%

Optimized with NIA 99.1% 98.3%

Optimized with NIA

+ EC + frequency tuning
99.0% 98.1%

4.4 System configuration for Other stochastic
non-ideal effects

As discussed in section 2.2, we categorize the thermal noise, shot

noise and random telegraph noise as ReRAM stochastic noise to

study in this work, where the actual ReRAM conductance with

additive ensemble stochastic noise can be modeled as:

Gact = G +Gg +Gp (12)

where Gg ∼ N (0,д2rms) is the Gaussian term as in eq. (2), and Pois-

son term is Gp = Grtn under the Poisson process as discussed in

eq. (3). It is noteworthy that the Gaussian term is highly correlated

with both the ReRAM programmed conductance and crossbar input

voltages, which makes the conductance variation of ReRAM cells

differs w.r.t each input, which is considered in the simulation. We

first try to apply the NIA technique to retrain the neural network

for adapting those stochastic terms described in eq. (12). However,

our simulation turns out injecting a Gaussian noise N (0,ΔG) to
the weight equivalent conductanceG does not reduce the accuracy

degradation. On the contrary, it reduces the inference accuracy. Our

explanation to such observation is that injecting Gaussian noise on

the weight performs L-2 norm regularization, which leads to entire

ReRAM arrays have smaller conductance. However, according to

RTN modeling discussed in section 2.2.3, ReRAM cell with smaller

G owns larger RTN variation which leads to incorrect inference

results. Therefore, in this subsection, rather than trying to adapt

the neural network to the stochastic noise terms in eq. (12), we

attempt to mitigate thermal noise, shot noise and RTN side effects

simultaneously through optimizing system operating frequency.

The examination of inference accuracy of crossbar system under

varying operating frequency (f) and temperature (T) is shown in

fig. 4. It shows that lowering the operating frequency can effectively

reduce the thermal noise and shot noise caused accuracy degrada-

tion. Then, the left-over terms of programming variation and RTN

5

Figure 4: Test accuracy on MNIST and CIFAR-10 dataset ver-

sus operating frequency f .

do not show significant impacts on the inference accuracy when f
is reduced. We also perform a Monte Carlo simulation with 10000

trails to observe ReRAM conductance variation when G = Gmin.

As shown in fig. 5b, when the f is lowered to 10 MHz, the conduc-

tance variation is almost located within the quantization boundary

(−ΔG, +ΔG). Note that when f is 1 GHz, the signal is buried in the

noise floor, and the magnitude and direction of the current through

the ReRAM is totally random. As a result, negative conductance

can be observed in fig. 5a.

Samples
0 5000 10000

C
on

du
ct

an
ce

 (
S

)

×10 -6

-2

0

2

4

6

Freq = 1 GHz

G
min

+0.5 ΔG

-0.5 ΔG

(a)

Samples
0 5000 10000

C
on

du
ct

an
ce

 (
S

)

×10 -6

0

1

2

3

Freq = 10 MHz

+0.5 ΔG

G
min

-0.5 ΔG

(b)

Figure 5: Monte Carlo simulation of the Gact under (a) f =

1GHz and (b) f = 10MHz, with 10000 trials. The solid line

indicate the ideal conductance (Gmin in this simulation), and

dashed line is the quantization boundary.

Moreover, we perform the simulation which takes all the afore-

mentioned non-ideal effects with the proposed NIA, EC and system

frequency tuning to minimize the accuracy drop, which is reported

in table 2. Note that, the accuracy reported in "Optimized with NIA"

does not consider thermal, shot and RTN noise.

5 CONCLUSION

Through PytorX, we are able to perform comprehensive simula-

tion large-scale DNNmapped to ReRAM crossbar-based accelerator

accurately. To overcome SAF effects, we proposed a digital SAF

error correction algorithm to achieve almost no accuracy degrada-

tion in DNN mapping without the need of network retraining. To

overcome IR drop effect, we proposed a noise injection adaption

method to model IR drop as a stochastic noise source in DNN train-

ing to regularize DNN model to make it adaptive to such non-ideal

effect. As for thermal, shot and random telegraph noise, we inves-

tigated to optimize system frequency to eliminate its degradation

in accuracy. Our proposed comprehensive methods together could

effectively mitigate the non-ideal effects of ReRAM crossbar and

provide great potential for future large scale accurate DNN crossbar

based accelerator.

Acknowledgement: This work is supported in part by the Na-

tional Science Foundation under Grant No. 1740126 and Semicon-

ductor Research Corporation nCORE.

REFERENCES
[1] Fabien Alibart et al. 2012. High precision tuning of state for memristive devices

by adaptable variation-tolerant algorithm. Nanotechnology 23, 7 (2012), 075201.
[2] Chakraborty et al. 2017. Technology Aware Training in Memristive Neu-

romorphic Systems based on non-ideal Synaptic Crossbars. arXiv preprint
arXiv:1711.08889 (2017).

[3] Chen et al. 2017. Accelerator-friendly neural-network training: learning varia-
tions and defects in RRAM crossbar. In DATE. European Design and Automation
Association, 19–24.

[4] Ching-Yi Chen et al. 2015. RRAM defect modeling and failure analysis based on
march test and a novel squeeze-search scheme. IEEE Trans. Comput. 64, 1 (2015),
180–190.

[5] Ping Chi et al. 2016. Prime: A novel processing-in-memory architecture for
neural network computation in reram-based main memory. In ACM SIGARCH
Computer Architecture News, Vol. 44. IEEE Press, 27–39.

[6] Kaiming He et al. 2016. Deep residual learning for image recognition. In CVPR.
770–778.

[7] Zhezhi He et al. 2017. A tunable magnetic skyrmion neuron cluster for energy effi-
cient artificial neural network. In Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2017. IEEE, 350–355.

[8] Daniele Ielmini et al. 2010. Resistance-dependent amplitude of random telegraph-
signal noise in resistive switching memories. Applied Physics Letters 96, 5 (2010),
053503.

[9] Shubham Jain et al. 2018. Rx-Caffe: Framework for evaluating and training Deep
Neural Networks on Resistive Crossbars. arXiv preprint arXiv:1809.00072 (2018).

[10] LB Kish et al. 2000. Noise in nanotechnology. Microelectronics Reliability 40, 11
(2000), 1833–1837.

[11] Alex Krizhevsky et al. 2009. Learning multiple layers of features from tiny images.
Technical Report. Citeseer.

[12] Yann LeCun et al. 1998. Gradient-based learning applied to document recognition.
Proc. IEEE 86, 11 (1998), 2278–2324.

[13] Beiye Liu et al. 2014. Reduction and IR-drop Compensations Techniques for
Reliable Neuromorphic Computing Systems. In Proceedings of the 2014 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD ’14). IEEE Press,
63–70.

[14] Lawrence T Pillage et al. 1995. Electronic circuit and system simulation methods.
McGraw-Hill New York.

[15] Puglisi et al. 2015. A complete statistical investigation of RTN in HfO2-based
RRAM in high resistive state. IEEE Transactions on Electron Devices 62, 8 (2015),
2606–2613.

[16] Linghao Song et al. 2017. Pipelayer: A pipelined reram-based accelerator for
deep learning. In High Performance Computer Architecture (HPCA), 2017 IEEE
International Symposium on. IEEE, 541–552.

[17] Xia et al. 2018. Stuck-at Fault Tolerance in RRAM Computing Systems. IEEE
Journal on Emerging and Selected Topics in Circuits and Systems 8, 1 (2018).

[18] Cong Xu et al. 2013. Understanding the trade-offs in multi-level cell ReRAMmem-
ory design. In Design Automation Conference (DAC), 2013 50th ACM/EDAC/IEEE.
IEEE, 1–6.

[19] Cong Xu et al. 2015. Overcoming the challenges of crossbar resistive memory
architectures. In 2015 IEEE 21st International Symposium on High Performance
Computer Architecture (HPCA). IEEE, 476–488.

[20] S. Yu et al. 2015. Scaling-up resistive synaptic arrays for neuro-inspired architec-
ture: Challenges and prospect. In 2015 IEDM. 17.3.1–17.3.4.

6

